Semantics in Declarative Systems
The Evolution of Computer Languages
April 2007
Dan McCreary
President, Dan McCreary & Associates
Minneapolis, MN
http://www.danmccreary.com
ABSTRACT

Just as animal species evolve to take advantage of ecological niches, computer languages are evolving to solve specific recurring problems. This paper analyzes the current trend of custom applications built with a tightly woven fabric of interlocking declarative languages. It defines terminology, discusses case studies in languages and controlled vocabularies such as HTML, CSS, XForms, and XQuery. We then look at the impact of declarative systems on overall application development strategy. Finally, we extrapolate these trends and predict the accelerated adoption of declarative languages when we factor in the impact social networking technologies such as folksonomies and semantic wikis on declarative semantics.
Keywords: semantics, declarative systems, declarative languages, XForms, folksonomies, wiki, semantic wiki, domain-specific languages (DSL)
DISCLAIMER

The opinions expressed in this paper are solely those of the author and do not necessarily reflect the opinions of the Minnesota Department of Revenue, the Internal Revenue Service, The Department of Justice or the Department of Homeland Security.
INTRODUCTION

The last ten years has seen an explosion of specialized declarative languages characterized by narrow purpose and small vocabularies. Beginning with simple HTML on the front-end and SQL on the back-end, declarative languages now encompasses hundreds, if not thousands, of domain-specific niche languages. For example, there are now widely adopted declarative languages for:
1. Documents with hypertext links (HTML)
2. Styling HTML documents (Cascading Style Sheets or CSS)

3. Selecting data from XML documents (XPath)

4. Defining web user interfaces (XForms)

5. Defining document constraints (XML Schemas),

6. Defining workflows (BPML
)

7. Performing transformations (XML Transforms)

8. Building and compiling source code (makefiles and Apache Ant)

9. Configuring XML processing pipelines (Cocoon sitemaps
)

10. Selecting tabular data from relational databases (SQL)

11. Selecting hierarchical data from XML documents and databases (XQuery)

12. Defining functions of an Enterprise Services Bus (ESB) (e.g. Mule
 configuration files)

13. Definitions of Web Services (WSDL)

14. Executing functionality and performance tests (JMeter
 configuration files)
Computer scientists consider few of these systems pure programming languages as most lack even the basic facilities for doing simple things such as updating variables, conditional execution or iteration. Yet we see innovative software companies wrap graphical user interfaces around these limited vocabularies to allow non-programmers to define and update business requirements. As a result, declarative systems continue to gain support and adoption in organization where cost reduction is associated with empowering business units to maintain their own business logic. This paper addresses the external semantics of declarative languages and systems; the semantics or meaning of each element as defined not by internal developers but Standards Bodies external to the development process.
Evolution: More than Just a Metaphor
Computer languages are subject to the same forces as Darwin’s species theory of natural selection. Solid and strong languages persist where weak languages languish and die out from disuse. The common forces that drive the animal species and programming languages are the notions of specialization and generalization. While traveling in the Galapagos Islands, Darwin discovered a single species of finches that evolved into nearly a dozen separate species
. (see Figure 1) Each species had a unique ecological niche with distinct beaks that allowed them to survive in that particular niche.

[image: image1.png]1 Geospia magniostis 2, Gaospza Fortis
3. Geospizaparla . Conbides aiwaces

Finches from Galapagos Archipelago.

Figure 1: Darwin’s Finches

Alternatively, some animals thrive because they have the tools to allow them to rapidly adapt to new and changing environments. For example, Raccoons have unusual thumbs, which though not opposable, enable them to open many closed containers such as garbage cans and doors. Raccoons are omnivores with a reputation for being clever and mischievous; their intelligence and dexterity equip them for survival in a wide range of environments and in the presence of humans
. Languages such as Java, Python, Ruby and Groovy are evolving to be even more flexible to tackle general computing problems. One interesting note about these new languages: they are excellent at quickly creating new domain-specific languages
.
TERMINOLOGY

Ironically, papers on semantics use the word “semantics” to mean very different things
. Therefore, it is important to define our terms Declarative Systems and semantics precisely.
Definition of a Declarative Systems
In the context of this paper, we define a Declarative System as any application development environment that captures high-level requirements for a narrow problem domain using one or more controlled vocabularies defined by third parties. These requirements are captured in an abstract yet semantically precise vocabulary. By abstract, we mean that the exact execution plan of how requirements are translated into precise functionality is deferred to a future process.
To appreciate this definition of a declarative system we contrast this approach with traditional procedural or functional programming. Procedural programming allows the developer to create functions, subroutines, objects, and methods (henceforth simply called functions) that have arbitrary meaning to that developer, group or project at a specific moment in time. The names of these functions are created on an ad-hoc basis without regard to local, state, national or international standards. The semantics or meaning of any function such as myFunction(X) is not subject to the approval of any group outside of the developer’s environment.
Related Terminology

Do not confuse a Declarative System with the computer science language taxonomy of Declarative Language. Declarative languages are used to describe a group of programming languages and to contrast them against imperative languages. These languages include functional, constraint and logic languages. Although some declarative languages such as XML Schemas do capture constraints, the computer scientist is usually talking about language classification systems.
In 2004, Martin Fowler popularized the term “Domain Specific Language” or DSL
. A DSL was any limited form of computer language designed for a specific class of problems. The term “Language Oriented Programming” also refers to the concept of building entire systems using a set of domain-specific languages.
Systems like Apache Ant, use simple build files to execute complex build behavior. Languages such as Maven and Groovy extend these build processes. These files often begin as application configuration files and evolve into robust domain specific languages.
Charles Simony, reputed to be one of the greatest software developers of our time, promotes the specification-driven development system “intentional software
”. Unfortunately, due to the secretive nature of this project, little material is available on this system at this time and the impact of external semantics on the maintainability of intentional software is unknown. What is known is that building custom applications from an abstract specification is also central to intentional software.
Declarative Languages Defer Binding Decisions
Generally, declarative languages are more abstract than procedural languages such a Java. The binding of a specific tag in a declarative language to the underlying behavior can be deferred until the program is actually executed. Some systems allow dynamic changes to the architecture of an application based on the features available in the web browser. For example, if the web browser supports XForms, you may send the XForms specification to the browser. If the browser does not support the XForms standard, you may have to transfer the form validation function to the web server. This dynamic binding changes the application from a fat-client (where the validation logic executes in the web browser) to a thin-client (where the validation occurs on the web server).
Declarative Languages and Business Requirements
Many people break software development processes into several phases described in Figure 2.

[image: image2]
Figure 2: Typical Software Development Lifecycle

In Figure 2 we see that business requirements are typically gathered by a business analyst (BA) from the subject matter experts (SME) and handed off to the designer who then hands the design to a programmer and then to testing and quality assurance.
From this figure, you may conclude that since declarative programming is about capturing requirements, the largest group of stakeholders would be the business analyst and the subject matter experts. Indeed, this is where declarative systems have played a significant role. Yet the current trend is that designers, programmers and QA staff are now all starting to use declarative systems to automate their processes. For example, Apache Ant is an excellent declarative language and tool for creating system builds. Apache Ant captures the “requirements” of the build process such as compile, link, load, move and copy in brief XML documents.

Definition of Declarative System

A declarative system is:
1. A software development system tailored to a specific domain (such as web application development), used to capture precise business requirements within the context of a problem domain (the implicit context).
2. Declarative systems do not specify how requirements are translated to build working systems. Declarative systems only define the requirements in a vocabulary familiar to the subject matter experts.
3. Declarative systems document requirements in specialized vocabularies and can be used to generate entire working systems including user interfaces, persistence and test data.
4. Declarative systems specifically omit some assumed requirements (such as system availability, performance, reliability, security etc).
Declarative systems can be thought of as a set of "little languages" with precise semantics that fit together like puzzle pieces. The term little languages originates from UNIX operating systems where small commands were written to read and write from each others input and output streams. For example, a listing of files can be piped into specialized programs that sort or delete items in the list. The programs sed and awk are forerunners to pattern scanning languages such as perl
.
Computer Science Definition of Declarative Language
Because the term declarative language or declarative style has been used in different contexts with slightly different meanings, we should stop to make a distinctive definition. Do not confuse a “Declarative System” with the taxonomy “Declarative Language”. In computer science the term “Declarative language" is used to describe a group of programming languages and to contrast them against imperative languages. Examples of declarative languages include functional languages, logic languages and constraint languages. These terms although related, are different uses of the phrase declarative language.
Data in Your Code

An interesting development in language evolution is the addition complex metadata in the source code. What started as a way to add metadata such as author, version, or date-last-updated (JavaDoc) to Java code has become feature of modern computer languages. Annotations (metadata in code) can now accessed simultaneously at run time in Java V1.5. So now procedural languages have even shown the need to grow metadata capabilities. Yet for the most part, they still lack widely adopted cross-vendor semantics
. This is as if thousands of small tribes were each given the gift of language before global travel were possible. The Tower of Babel comes to mind. We can relate this to the problem of different vendors adding new HTML tags to a web page that has meaning only to their browser. Annotations do address the capability to share metadata but not the real core problem: the semantic issues
. Therefore, while these languages have new metadata capabilities, vendors still hold the power to lock users into their system.
The Declarative Web Sandwich: HTML and SQL

Projects that have similar requirements tend to produce common specialized languages. For example consider the front-end (or presentation tier) and back-end (persistence tier) of web application development. Programmers use HTML-based web browsers to display data and relational database engines that use SQL to select data. HTML is so prevalent that designers have promoted and benefited from another specialized language: Cascading Style Sheets or CSS.
As larger communities of developers find similar needs there is more pressure to reuse code and avoid vendor lock-in. Vendors on the other hand would like to keep their customers from migrating away from their platform and discourage the use of worldwide declarative language standards. The larger the installed base of the vendor the greater the risk and resistance to move toward international declarative languages.
The Procedural Middle

Although the front-end and back-end of application development is dominated by declarative languages, the middle tier has resisted any mainstream declarative language. This makes sense when we consider how widely business functionality varies. There are over 100 web application frameworks
 and over 700 web content management systems
 in use today.
The Economics of Software Development Tools

Although many application architects are aware of declarative language options, the decision to use a declarative language is influenced by the availability of development tools. The more specialized a language is, the harder it is to find free or low-cost development tools. Development tools today are on both commercial products and open-source tools such as the Eclipse Integrated Development Environment (IDE)
. When a developer needs a software tool, if the pain is great and their skill is adequate, they frequently build development tools for their own language. If other people have similar needs, developers will cooperate at creating an extension to their IDE to manage that language. Some IDEs have literally thousands of extensions for editing declarative languages. Because of the growing number of add-ons, the Firefox web browser is becoming an IDE for web development
.
Alternatively, general-purpose languages such as Java have some of the most advanced (and free) development tools. There are not only compilers and debuggers, but also vast extensions for building applications (Apache Ant), re-factoring, performing complex analysis, modeling and a myriad of other functions. Therefore, unless a declarative language has critical mass the quality of development tools frequently lag behind that of widely used general-purpose languages.

A BRIEF OVERVIEW OF SEMANTICS

Due to its audience and method of presentation (presented at a semantics conference), only a cursory overview of relevant semantic topics are present in this paper.

Semantics is the science of meaning. When we study semantics, the question, how do we know if two people associate the same MEANING of a spoken word? For example when two individuals read or hear the word “cat” how do we know that each individual perceives the same thing?
[image: image3.wmf]referent

concept

symbol

“

cat

”

Figure 3: The Semantic Triangle
The semantic triangle
 pictured in Figure 3, reflects the issues housed in this discussion. The solid lines connecting the symbol to the concept and the concept to the referent indicate direct connection. The connection between the symbol and the cat however, is an implied relationship and indicated by a dashed line as it cannot exist between two individuals without first passing through the brain. When presented to the brain, the process requires the brain to map the symbol to a set of known attributes already associated with that symbol. There is no real link between the symbol “cat” the referent without the brain to process the symbol.

When building custom applications, one begins the process by interviewing the appropriate subject matter experts (SME’s) to gather definitions, terms, processes and procedures and then logically compile the information. Quite often, the outcome will result in different stakeholder groups using the same term to represent different things. For example, one business unit defines their “customers” as individual shoppers in a grocery store while another business unit’s “customers” are large corporations. In the prior example, the attributes name, address, and e-mail are associated with their customer. In the other unit, the attributes company name, home office location, and industry code defines their customer.
This semantic confusion frequently gets transferred to software development teams and database teams. Respective teams have objects-classes (both called “Customer”) and relational database tables (both called “Customer”). Trying to integrate this data into a central enterprise class library or data warehouse frequently becomes a nightmare for all involved. Bar room brawls break out over who owns the symbol “Customer”. This organization has reached the “semantic swamp”
.
In the context of declarative languages we now ask, if we have a data element in an XML file, and that XML file has similar or different semantics depending on who you talk to (the context), what impact will that have on the overall project?

Semantics and Support Costs

In summary, the broader you share precise semantics across organizations and over time, the higher probabilities your declarative system will have lower support and maintenance costs in the future.
Semantic precision in this context is the probability that two organizations presented with the same symbol in a declarative language will associate the same attributes with that symbol. That symbol my be complied into a precise behavior by different compilers at different times and by different organizations. When dealing with data, this implies that the same data element will be mapped into the correct fields of a local database. Therefore, the semantic precision or interpretation of the desired specification is critical to the longevity and maintainability of the system.

[image: image4.wmf]time

space: (projects, organizations)

Small Semantic

Footprint

(rapid prototype)

Large

Semantic

Footprint

(long lifetime

system)

weeks

months

years

10+ years

person

team

dept.

world

enter

-

prise

Figure 4: Semantic Precision in Time and Space
Figure 4 depicts the relationship between space and time with respect to the clarity of meaning. The vertical dimension of space includes the dimensions of person, team, project and organization. How precise will a data element in a declarative language file be if 10 or 100 people in 100 different projects in 100 different organizations use it? Do you need support staff that could be drawn from contractors around the world?
The horizontal axis reflects the dimension of time and demonstrates how semantically precise a data element will be weeks, months, years from it’s’ inception.
In the lower left hand corner is imprecise semantics use in a small rapid-prototype project where the meaning of data elements are not relevant outside of a small development team. The semantic “footprint” requirements or area in time and space for semantic clarity is small. All that is required is “in-the-can” semantic clarity between the database and the application
.

As you move toward projects that may exchange data with worldwide partners, the semantic footprint grows. The “on-the-wire” semantic competencies for project success become much more rigorous. On-the-wire semantics implies that as data moves across telecommunication protocols the meaning does not change.

If a procedural developer creates a function called myFunction() and twenty years hence another developer comes across said function, the cost to maintain it is directly proportional to the length of time it takes the new developer to completely understand or grok
 the intent of myFunction().
In contrast, the decision to use a specific tag in a widely adopted declarative language decreases the risk of an incorrect semantic interpretation. Moreover, as a language matures tags validate against thousands of systems using similar semantics that depend on precise functionality mapping. The probability that code will not function, but rather will be modifiable and extensible increases dramatically.

Consider the HTML bold tag . The tendency to markup documents using HTML bold tags in 1992 resulted in a safe investment, as HTML gained in popularity. Inasmuch as systems are migrating toward CSS instead of using embedded bold tags, one can easily find an XML transform that converts bold tags to class=”bold” or a similar CSS structure while semantics become the new pathway for web programmers to generate web sites.

No Replacement for Data Stewardship

Despite all the advances in computer language technology, we have found that there is no substitute for good data stewardship on the part of each business unit. This implies that business units must be semantically precise yet concise in their definitions. They must differentiate related data elements and be ruthless in the quick removal of redundant data elements.
If subject matter experts are unable to communicate requirements using precise words, systems cannot function. It becomes imperative that business units secure training to develop precise definitions.
Metadata Shopping Carts
At SemTech06, I presented a case study that ties the National Information Exchange Model (NIEM), designed for homeland security data, to data for K-12 education,
 demonstrating that when captured precisely, the growth of controlled and semantically precise vocabularies using standards such as ISO/IEC 11179 metadata registries
 and OWL
 can emerge.
NIEM Shopping Cart Case Study

The National Information Exchange Model (NIEM) actively uses and embraces controlled metadata registries. In addition, the NIEM development team went one-step further: they added tools to allow users the ability to “shop” for a subset of required terms. The NIEM subset generation tools allow non-programmers to go “shopping” for data elements with an on-line shopping cart. When users are done selecting data elements from the registry they can “checkout” and download a file that is imported directly into their document constraint schema. Business rules in the subset tool track dependencies and automatically include dependant elements in the subset. These subsets schemas then automatically appear on “pick lists” for users editing the constraint tools. An example of a graphical subschema generation tool is Altova’s XMLSpy

In summary users select data elements, place them in pictures and use these pictures to drive forms development. This is also known as model-driven architecture but here we add a semantic element to the process.

The Puzzle of Declarative Systems

When recommending a specific technology, application architects must consider many tradeoffs
. Two factors strongly suggest the use of declarative systems. One is business-unit empowerment. Empowerment implies allowing non-programmers within each business to maintain both simple and complex business rules. This has a critical in the long-term maintenance cost of the systems. The second is the length the system will intend to be used. The longer the systems projected lifespan, the higher the chance key programmers that created the initial system will no longer be involved in the project. When software development is outsourced, sometimes business units find themselves held hostages of development firms that do not document their code, and cannot explain code functionality and charge a higher hourly rate of the open market.
It becomes the purveyance of the application architect to recommend a family of standards for use. To quote Grace Hopper, “The wonderful thing about standards is that there are so many of them to choose from.
” Each piece in the puzzle metaphor depicted below represents a portion of business requirements.
[image: image5.wmf]Semantics

Constraints

Presentation

Build

Publish

Transform

Workflow

Query

Update

Forms

Semantics

Semantics

Constraints

Constraints

Presentation

Presentation

Build

Build

Publish

Publish

Transform

Transform

Workflow

Workflow

Query

Update

Query

Update

Forms

Forms

Figure 4: The Application Development Puzzle
Developers use existing pieces to write their own or use hybrid solutions to define their standards.

However, like hand-made puzzles, not all pieces fit together very well. Some pieces need the application of procedural glue code to make the system work. For example, if your forms send XML to a REST interface but your database only accepts XML with a JDBC driver you will need procedural glue. In this scenario, one may need to write a servlet that converts data from XML REST POSTs into SQL INSERT statements.
For each of the puzzle pieces it would be ideal if a declarative language with the appropriate interface existed. Currently, I am working on a project that uses both XForms and eXist native XML database as well as IBM’s DB2 Version 9 (PureXML)
. The project requires building complex real estate valuation forms using a web interface. XML Schemas capture the constraints and a metadata registry captures the semantics of each leaf data element in the XML Schema. Although not intentionally designed for use with each other, the systems worked almost perfectly together. XForms becomes a good fit as it is designed to work with the XHTML, XML Schema, XPath, XMLEvents and CSS standards. It can also be extended with the XBL standard. The eXist native XML database is also innovative; it allows most functions typically used in the middle tier (such as session management) to be called directly from XQuery. Figure 5 is the same puzzle with some of the declarative language standards used for this project.

[image: image6]
Figure 5: Declarative Language Choices for a Sample Real Estate Project

What Standard Should You Use?
Your choice of what declarative language to use may be critical to the success of your project. The general rule of thumb: there is safety in numbers. Do a search on Google or some other search engine and look for the number of hits. If you know the filetype, extension or namespace associated with your language you can quickly get a feel for how popular a language is.
Example:

	Standard Name
	Google Search
	Hits

	XML Schema
	filetype:xsd
	243,000

	RelaxNG
	filetype:rng
	13,700

Table 1: Constraint File Types
Advantages of Externally Defined Declarative Systems

There are many benefits to declarative systems over traditional general-purpose procedural languages, when semantics are pre-defined. Some of these include:
Semantic precision - data elements each have precise meaning.

Easy to learn – Users can frequently learn declarative languages in a few hours due to their limited vocabulary.
Transformability – XML has a reputation of being very easy to transform using another declarative language: XSL. Although the pattern-matching features of XSL are difficult to grasp for users that have not had exposure to rule-based systems.
Model Driven Architecture (MDA) – Once requirements are captured in an easy-to-transform specification, these files become the model in a model-driven system. This means that as the requirements changes the specification only need to be transformed.
There are also disadvantages, especially if the designers of the language did not consider your specific needs, the language is not extensible or the tools to develop and debug the language are not mature.

Making Declarative Languages Semantically Precise

A problem with some declarative languages is that they are not always semantically precise. The ISO/IEC 11179 metadata registry specifications give provide guidelines to describe data definitions for elements in declarative languages
. These guidelines include definitions that are:
Precise - The definition should use words that have precise meaning. Avoid words that have multiple meanings or multiple word senses.

Concise - The definition should use the shortest description possible that is still clear.

Non-Circular - The definition should attempt to avoid the term you are trying to define in the definition itself.

Distinct - The definition should differentiate a data element from other data elements.
Once definitions are created, metadata registries should be published and wiki pages and contact people given for each data element should questions arise. Using a declarative language will only happen when users trust that the semantics of each data element is precise. This trust is the same trust described by Rebecca Wirfs-Brock and Ken Rubin in their groundbreaking studies on code reuse. They found that if users did not trust the code (and the people that wrote the code) they tended to rewrite their own versions. Similarly, if users do not trust the semantic precision of a declarative language (or specific tags in a declarative language) they will tend to jump into their own procedural world and create new functional units with names that may not have precise semantics outside their own group.
Extending Declarative Languages

Moving from the table-driven world of relational databases to the tree-driven world of XML is highly beneficial due to the flexibility of the tree structure. When a new column is added to a table, each row of the table can be impacted. With XML new optional data elements can be added to an XML Schema without impacting existing data. Old data will still validate using the new schema as long as required elements are not added to the XML Schema.
In the same sense, an XML Schema can define the structure of many declarative languages. New tags can be added at any time without invalidating the existing code. In this way XML based declarative languages can start with modest proof-of-concept configuration files and evolve into full featured languages. Since XML Schemas can be converted directly into XForms applications, Web forms can be quickly created to allow non-programmers to change business specifications.

XML Binding Language Case Study

One example of Declarative Language flexibility is the new XML binding language (XBL) currently in draft by the World Wide Web Consortium (w3c.org)
.
Many languages require the inserting of new behavior behind a given XML tag. Frequently, this behavior is expressed in a procedural language such as JavaScript or Java. In a web browser with a document object model (DOM), XBL binds a specific operation on the DOM tree with an XML tag. For example, currency fields should have commas inserted when displayed in a web page. This behavior is not possible to add with a simple cascading style sheet; with XBL a CSS file triggers JavaScript to display currency correctly. The HTML markup can remain clean and easy to generate and read.
XBL allows declarative languages such as XForms to be quickly extended and new behavior to be quickly encapsulated behind an XML tag or XML attribute.

Graphical Tools for Building Languages
In the past, if you wanted to build your own language you had to learn to write a parser and compiler. Eventually tools such as yacc
 and lex were developed to allow novice programmers to quickly create new parsers and grammars. These tools read a configuration file and compiled a complier.

Users can now create complex configuration file structures by drawing XML Schema diagrams. Tools like Xerces and Saxon can be used to read these XML files and perform almost any activity.

For example, the Mule Enterprise Service Bus (ESB) allows a large variety of ESB functions to be executed by writing a simple configuration file. The barrier to creating and extending declarative languages is being removed and the number of new declarative languages is increasing. This is not to say that all new languages will persist evolutionary forces will continue to promote only the survival of the fittest.
Advanced Code Coloring and the Right Brain

There are many advantages of using small vocabularies. In the past, emphasis was placed on building graphical tools for novice developers for small vocabulary languages. As a further step, novice developers can more-easily recognize patterns when colored XML data elements are displayed in a text editor. We begin to move away from syntax coloring and toward data element coloring. This is possible because some XML-based declarative languages such as XForms have a limited number of data elements. If text editors are customized to color code each data element in a unique way with color, font-size and other symbols, the person editing these file can use the pattern-matching portions of their right brain to quickly find out patterns and exceptions.
RECOMMENDATIONS
The author offers the following recommendations for application architects:
1. Use externally defined semantically-precise declarative systems over procedural systems when the business problem is in the right context
2. Aggressively promote data stewardship in business units
3. Use controlled vocabularies and metadata shopping tools to allow non-programmers to select data elements from lists

4. Separate semantics (leaf elements) from constraints (branches)

5. Leverage the pattern matching portion of the brain using graphical development tools and element-based syntax coloring editors

6. Train programmers on ways to extend declarative vocabularies using technologies such as XML Binding Language (XBL)

7. Use procedural code to build interfaces between incompatible systems

8. Isolate procedural code behind semantically precise XML/REST web services.
9. Don’t expect your procedural programmers to jump on the declarative bandwagon without training

10. Use social networking tools (voting, wikis) to rank and find appropriate tags and extensions
Toward the Semantic Wiki and the Acceleration of New Declarative Languages
The rise of Wikipedia demonstrates how contributors from around the world can collaborate and quickly build high-quality systems. Going forward, Wiki driven projects could implement features that allow greater semantic precision and still allow careful versioning and release publishing. This would allow groups of developers to extend standards and test them quickly.
Data Element Folksonomies: Metadata for your Metadata
As metadata registries increase in size, the key challenge will become finding the right data element to meet your business requirement. For example searching the NIEM metadata registry using the word “Individual” returns no useful data elements. The user must know that the correct data element is “Person” to describe an instance of a human being. I suspect novice users have repeated this error hundreds of times. Under wikipedia the first user would simply add a new page for Individual redirecting the user to Person page. No future person would be frustrated by not finding the right tag for individual.

One of the most recent developments in web searching has been the use of ah-hoc user-contributed tags to data (Folksonomies [17]). Folksonomies allow hard-to-find items such as images, URLs and web logs (blogs) on web sites such as Flickr.com, Technorati.com and del.icio.us. These tags allow users to quickly search large data sets using similar tags to find the items that are relevant.

Although Folksonomies have their own problems, they do avoid the costs of having experts in ontology development take multiple-years to codify a subject-domain. If items are hard to find or incorrectly classified, thousands of users can quickly re-classify items using an open-permission approach.

Semantic wiki extensions to systems such as Media wiki now follow the rule that a little bit of semantics goes a long way. By simply adding typed links to Wiki pages semantics can be quickly be added to a wiki site. For example just by adding a “located-in” prefix to a link, wiki sites can answer queries such as “What cities are in Minnesota”
.
The Return on Investment of Declarative Systems

The logic of this paper implies that declarative systems allow custom applications to be built that adhere to many different international standards. These standards allow not only software components such as web browsers and databases to be swapped out with minimal impact, but developers to be interchanged in ways that have not occurred in the past. This may trigger the following consequences:
· Business unit personnel rather than software developers can make business logic updates at a lower cost.

· Developer skills will be re-channeled to include skills such as the extension of declarative languages.
· Software development outsourcing companies (especially those overseas) will need to understand how their programmers can be retrained to adapt to projects with dramatically fewer programmers.

· To be effective, code search engines such as Google Code Search
 will need to be tuned to search just for other declarative languages and extension

DECLARATIVE SYSTEMS AND POWER DISTRIBUTION
Declarative systems may become a disrupting force in power distribution for the computer industry. As seasoned procedural programmers lose their stronghold, vendors that attempt to lock customers into proprietary application program interfaces will also experience a decrease in power. Organizations like Microsoft, may loose billions in revenue if complex applications with rich drag-and-drop functionality could be executed from ordinary open-source browsers running on Linux operating systems.

For Microsoft and other companies to keep their customers from migrating away from proprietary APIs they must do whatever they can to prevent declarative systems and the ideas they embody to take root in young engineers that will become tomorrows application architects.

How long can proprietary API vendors keep this knowledge from spreading? The answers depends on whether or not the ideas in this paper become contagious “memes
”. Small ideas that are spread via word-of-mouth to others. I believe that as more developers build entire applications without using procedural code, these ideas will spread. I encourage both feedback on both small and large contagious memes related to declarative systems.
It is interesting to note that although many enterprise architects are aware of the dangers of vendor lock-in, they are frequently unaware at the billions of dollars at stake if declarative systems become prevalent.

SUMMARY: THE FUTURE DECLARATIVE SYSTEMS
We have described how declarative systems can dramatically lower custom application development costs by empowering non-programmers to take control of their own business logic. Jason Parker has theorized that the percentage of total code in new business systems will follow a pattern depicted in Figure 6.
In his vision, declarative languages will spread from the front-ends and back-ends of the application stack and increasingly displace the middle tier. The transmission of XML directly from web-browser resident XForms applications to a native XML database is one example of the elimination of middle-tier objects and the procedural code used to convert form data into objects and convert objects into relational data.
[image: image7.wmf]Time

100%

Relative

Code Base

Procedural code (Java, JavaScript, VB, C#, C++)

Declarative code (XHTML, CSS, XSLT,

XForms

)

100%

Relative

Code Base

Procedural code (Java, JavaScript, VB, C#, C++)

Procedural code (Java, JavaScript, VB, C#, C++)

Declarative code (XHTML, CSS, XSLT,

XForms

)

Declarative code (XHTML, CSS, XSLT,

XForms

)

Figure 6: The Parker Projection: The Changing Mix of Procedural vs. Declarative Code over Time (courtesy Jason Parker)
How quickly will declarative languages take to dominate the middle tier is dependant on the problems presented, language choice and how well the two fit together. One extreme locks the user into a single vendors procedural API for the client and the database. In this situation, one is generally dependant on procedural code. At the other end of the spectrum, web applications that use XForms, CSS, XHTML, REST Web Services and a web-service enabled database such as the XML eXist database can be used. My experience with these systems indicates that nearly 100% of these systems use solely declarative languages. As other XML-centric systems develop XQuery and REST interfaces the amount of procedural code could drop dramatically.
By empowering non-programmer personnel to maintain more of the application specification, the role of support of these systems moves from the IT department to the business unit. This shift increases time-to-market and responsiveness while minimizing communication issues and development dollars.
ACKNOWLEDGMENTS

I would like to acknowledge Ann Kelly, for her diligent and professional reviews of many drafts of this paper. I would also like to thank my colleagues and technical reviewers: Arun Batchu, Alex Bleasdale, Kurt Cagle, Howard Dodd, Kyle Larson, Jason Parker, Ken Rowe and Leila Tite.
Test

(QA Staff)

Build

(Programmer)

Design

	(Architect)

Requirements

	(Business Analyst�and Subject�Matter Experts)

XQuery

BPEL

XQuery Update

XForms

XSL

Cocoon

Metadata

Registry

Apache�Ant

CSS�HTML

XMLSchema

� See � HYPERLINK "http://en.wikipedia.org/wiki/Business_Process_Execution_Language" ��http://en.wikipedia.org/wiki/Business_Process_Execution_Language�

� See � HYPERLINK "http://en.wikipedia.org/wiki/Apache_Cocoon" \l "Sitemap" ��http://en.wikipedia.org/wiki/Apache_Cocoon#Sitemap�

� See � HYPERLINK "http://mule.codehaus.org/" ��http://mule.codehaus.org/�

� See � HYPERLINK "http://en.wikipedia.org/wiki/JMeter" ��http://en.wikipedia.org/wiki/JMeter�

� See � HYPERLINK "http://en.wikipedia.org/wiki/Darwin%27s_finches" ��http://en.wikipedia.org/wiki/Darwin%27s_finches�

� See � HYPERLINK "http://en.wikipedia.org/wiki/Racoon" ��http://en.wikipedia.org/wiki/Racoon�

� Neil Ford, Language Oriented Programming, see � HYPERLINK "http://www.neilford.com" ��http://www.neilford.com�

� Doug Lenat, Semantic Technology Conference Keynote, 2005, � HYPERLINK "http://www.wilshireconferences.com/stc05/Stc05Final.pdf" ��http://www.wilshireconferences.com/stc05/Stc05Final.pdf�

� See Martin Flowers blog at: � HYPERLINK "http://www.martinfowler.com/bliki/DomainSpecificLanguage.html" ��http://www.martinfowler.com/bliki/DomainSpecificLanguage.html�

� See � HYPERLINK "http://www.intentionalsoftware.com" ��http://www.intentionalsoftware.com�

� For more on little languages see � HYPERLINK "http://en.wikipedia.org/wiki/Domain-specific_programming_language" ��http://en.wikipedia.org/wiki/Domain-specific_programming_language�

� See JSR 269 for an attempt to add semantics to Java annotations at � HYPERLINK "http://jcp.org/en/jsr/detail?id=269" ��http://jcp.org/en/jsr/detail?id=269�

� An interesting use of Java annotations and semantics is discussed in the Sun BabelFish blog � HYPERLINK "http://blogs.sun.com/bblfish/entry/java_annotations_the_semantic_web" ��http://blogs.sun.com/bblfish/entry/java_annotations_the_semantic_web�

� See � HYPERLINK "http://en.wikipedia.org/wiki/List_of_web_application_frameworks" ��http://en.wikipedia.org/wiki/List_of_web_application_frameworks�

� See � HYPERLINK "http://www.cmsmatrix.com" ��http://www.cmsmatrix.com�

� See � HYPERLINK "http://www.eclipse.org" ��http://www.eclipse.org�

� See � HYPERLINK "https://addons.mozilla.org" ��https://addons.mozilla.org�

� For an excellent overview of semantics in business systems see Semantics in Business Systems by Dave McComb, Morgan Kaufmann, 2003

� See � HYPERLINK "http://en.wikipedia.org/wiki/semantic_triangle" ��http://en.wikipedia.org/wiki/semantic_triangle�

� The astute reader here will see that this issue could be resolved on-the-wire by allowing each business unit to retain the label “customer” and assign each business unit separate namespaces.

� By “in-the-can” semantics, we refer to the exchange of meaning between a database (typically a “can” or cylindrical symbol) and a single front-end such as a web page. Contrast this with “one-the-wire” semantics where data must have meaning as it moves between computers usually in different organizations.

� See � HYPERLINK "http://en.wikipedia.org/wiki/Grok" ��http://en.wikipedia.org/wiki/Grok�

� See � HYPERLINK "http://www.danmccreary.com/presentations/semweb2006" ��http://www.danmccreary.com/presentations/semweb2006�

� See � HYPERLINK "http://en.wikipedia.org/wiki/ISO/IEC_11179" ��http://en.wikipedia.org/wiki/ISO/IEC_11179�

� Web Ontology Language (OWL) � HYPERLINK "http://www.w3.org/2004/OWL/" ��http://www.w3.org/2004/OWL/�

� See the Altova Product web site at � HYPERLINK "http://www.altova.com/products/xmlspy/graphical_xml_schema_editor.html" ��http://www.altova.com/products/xmlspy/graphical_xml_schema_editor.html�

� See SEI ATAM � HYPERLINK "http://www.sei.cmu.edu/architecture/ata_method.html" ��http://www.sei.cmu.edu/architecture/ata_method.html�

� See � HYPERLINK "http://en.wikiquote.org/wiki/Grace_Hopper" ��http://en.wikiquote.org/wiki/Grace_Hopper�

� See � HYPERLINK "http://www.exist-db.org" ��http://www.exist-db.org�

� For a description of how to write data element definitions see: � HYPERLINK "http://en.wikipedia.org/wiki/Data_element_definition" ��http://en.wikipedia.org/wiki/Data_element_definition�

� See � HYPERLINK "http://www.w3.org/TR/xbl" ��http://www.w3.org/TR/xbl�

� Yet Another Complier Compiler � HYPERLINK "http://en.wikipedia.org/wiki/Yacc" ��http://en.wikipedia.org/wiki/Yacc�

� See � HYPERLINK "http://en.wikipedia.org/wiki/Semantic_wiki" ��http://en.wikipedia.org/wiki/Semantic_wiki�

� See Google Code Search at � HYPERLINK "http://www.google.com/codesearch" ��http://www.google.com/codesearch�

� See � HYPERLINK "http://en.wikipedia.org/wiki/Meme" ��http://en.wikipedia.org/wiki/Meme�

2007 Semantic Technology Conference
 3

